This course provides a hands-on journey into credit risk prediction using Python with a focus on logistic regression, decision trees, and ensemble methods. Learners will begin by outlining project workflows, importing data, and applying data preprocessing techniques such as handling missing values, encoding categorical features, and scaling numerical variables. Through exploratory data analysis (EDA), they will interpret data patterns and relationships to build stronger foundations for modeling.

Morgen endet die Aktion: Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Was Sie lernen werden
Preprocess financial datasets using encoding, scaling, and EDA techniques.
Build and tune logistic regression, decision trees, and Random Forest models.
Evaluate credit risk models with confusion matrices, ROC curves, and ensemble methods.
Kompetenzen, die Sie erwerben
- Kategorie: Data Processing
- Kategorie: Credit Risk
- Kategorie: Machine Learning Methods
- Kategorie: Decision Tree Learning
- Kategorie: Random Forest Algorithm
- Kategorie: Performance Tuning
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Performance Metric
- Kategorie: Exploratory Data Analysis
- Kategorie: Applied Machine Learning
- Kategorie: Predictive Modeling
- Kategorie: Data Manipulation
- Kategorie: Predictive Analytics
- Kategorie: Data Analysis
- Kategorie: Classification And Regression Tree (CART)
- Kategorie: Supervised Learning
- Kategorie: Pandas (Python Package)
- Kategorie: Financial Modeling
- Kategorie: Risk Modeling
- Kategorie: Feature Engineering
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂźgen
September 2025
6 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 2 Module
In this module, learners gain a strong foundation in building a credit default prediction model using Python. The module introduces the projectâs scope, outlines the workflow, and emphasizes the importance of structured data handling. Learners will explore data preprocessing techniques such as handling missing values, encoding categorical features, and scaling numerical variables. In addition, they will perform exploratory data analysis (EDA) to identify patterns, visualize distributions, and uncover key relationships within the dataset. Finally, learners will split the dataset into training and testing sets to ensure reliable evaluation of logistic regression models for predicting credit default risk.
Das ist alles enthalten
9 Videos3 Aufgaben1 Plug-in
In this module, learners advance beyond data preparation into the core of predictive modeling. The module introduces evaluation metrics such as the confusion matrix and ROC curve to assess classification performance in credit default prediction. Learners will then explore hyperparameter tuning methods like Grid Search and Randomized Search to optimize logistic regression models. The module further builds knowledge with decision tree theory, covering splitting criteria, visualization using Graphviz, and practical implementation in Python. Finally, learners will apply ensemble techniques with Random Forest to reduce overfitting and improve model accuracy for robust credit risk prediction.
Das ist alles enthalten
10 Videos3 Aufgaben
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
University of Pennsylvania
- Status: Vorschau
Starweaver
- Status: Kostenloser Testzeitraum
Edureka
- Status: Kostenlos
Coursera Project Network
Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?





Neue KarrieremĂśglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten â 100 % online
SchlieĂen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂźr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once youâve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂźtzung verfĂźgbar,