By the end of this course, learners will be able to apply Bayesian statistics for decision-making in both business and healthcare contexts, implement probabilistic models in Excel, and perform advanced A/B and multi-variant testing using Python.

5 days left: Discover new skills with 30% off courses from industry experts. Save now.


Ce que vous apprendrez
Apply Bayesian reasoning in Excel to calculate, update, and interpret probabilities.
Build probabilistic models and analyze predictive performance in real datasets.
Use Python with MCMC and PyMC for A/B testing, posterior inference, and scaling.
Compétences que vous acquerrez
- Catégorie : Microsoft Excel
- Catégorie : Bayesian Statistics
- Catégorie : A/B Testing
- Catégorie : Predictive Analytics
- Catégorie : Markov Model
- Catégorie : Statistical Methods
- Catégorie : Business Analytics
- Catégorie : Statistical Programming
- Catégorie : Advanced Analytics
- Catégorie : Machine Learning
- Catégorie : Sampling (Statistics)
- Catégorie : Probability Distribution
- Catégorie : Decision Making
- Catégorie : Statistical Modeling
- Catégorie : Health Informatics
- Catégorie : Probability & Statistics
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
10 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
This module introduces the core principles of Bayesian statistics and demonstrates their application in supervised machine learning and A/B testing. Learners will explore the fundamentals of Bayesian inference, examine practical examples of decision-making under uncertainty, and gain hands-on experience implementing Markov Chain Monte Carlo (MCMC) methods using PyMC. By the end of the module, participants will develop the ability to connect Bayesian theory with real-world machine learning experiments.
Inclus
8 vidéos4 devoirs1 plugin
This module introduces learners to the fundamentals of preparing healthcare datasets for Bayesian statistical modeling using Microsoft Excel. Learners will explore project goals, understand the structure of real-world healthcare testing data, and create efficient summaries for initial analysis. By examining historical, future, demographic, and center-based trends, students will gain the ability to organize, interpret, and structure data effectively, ensuring a strong foundation for Bayesian probability applications in healthcare analytics.
Inclus
7 vidéos3 devoirs
This module guides learners through constructing and applying Bayesian probability tables in Microsoft Excel to analyze healthcare testing scenarios. Students will learn how to structure Bayesian frameworks, calculate joint probabilities, update prior probabilities with new evidence, and interpret outcomes across multiple testing cycles. By the end of this module, learners will be able to apply Bayesian reasoning to real-world healthcare data, enhancing accuracy in predictive healthcare analytics.
Inclus
4 vidéos3 devoirs
En savoir plus sur Data Analysis
Duke University
- Statut : Prévisualisation
Tufts University
- Statut : Essai gratuit
University of California, Santa Cruz
- Statut : Essai gratuit
University of California, Santa Cruz
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,