IBM
IBM Generative AI Engineering Certificat Professionnel

Découvrez de nouvelles compétences avec 30 % de réduction sur les cours dispensés par des experts du secteur. Économisez maintenant.

IBM

IBM Generative AI Engineering Certificat Professionnel

Develop job-ready gen AI skills employers need. Build highly sought-after gen AI engineering skills and practical experience in just 6 months. No prior experience required.

Enseigné en Français (doublage IA)

IBM Skills Network Team
Sina Nazeri
Abhishek Gagneja

Instructeurs : IBM Skills Network Team

68 006 déjà inscrits

Inclus avec Coursera Plus

Obtenez une qualification professionnelle qui traduit votre expertise
4.7

(2,601 avis)

niveau Débutant

Expérience recommandée

6 mois à raison de 6 heures par semaine
Planning flexible
Obtenir une qualification professionnelle
Partagez votre expertise avec les employeurs
Obtenez une qualification professionnelle qui traduit votre expertise
4.7

(2,601 avis)

niveau Débutant

Expérience recommandée

6 mois à raison de 6 heures par semaine
Planning flexible
Obtenir une qualification professionnelle
Partagez votre expertise avec les employeurs

Ce que vous apprendrez

  • Job-ready skills employers are crying out for in gen AI, machine learning, deep learning, NLP apps, and large language models in just 6 months.

  • Build and deploy generative AI applications, agents and chatbots using Python libraries like Flask, SciPy and ScikitLearn, Keras, and PyTorch.

  • Key gen AI architectures and NLP models, and how to apply techniques like prompt engineering, model training, and fine-tuning.

  • Apply transformers like BERT and LLMs like GPT for NLP tasks, with frameworks like RAG and LangChain.

Vue d'ensemble

Ce qui est inclus

Certificat partageable

Ajouter à votre profil LinkedIn

Enseigné en Français (doublage IA)
124 exercices pratiques

Faites progresser votre carrière avec des compétences recherchées

  • Recevez une formation professionnelle par IBM
  • Démontrez vos compétences techniques
  • Obtenez un certificat reconnu par les employeurs auprès de IBM

Certificat professionnel - série de 16 cours

Ce que vous apprendrez

  • Explain the fundamental concepts and applications of AI in various domains.

  • Describe the core principles of machine learning, deep learning, and neural networks, and apply them to real-world scenarios.

  • Analyze the role of generative AI in transforming business operations, identifying opportunities for innovation and process improvement.

  • Design a generative AI solution for an organizational challenge, integrating ethical considerations.

Compétences que vous acquerrez

Catégorie : Generative AI
Catégorie : Natural Language Processing
Catégorie : Market Opportunities
Catégorie : Responsible AI
Catégorie : LLM Application

Ce que vous apprendrez

  • Describe generative AI and distinguish it from discriminative AI.

  • Describe the capabilities of generative AI and its use cases in the real world.

  • Identify the applications of generative AI in different sectors and industries.

  • Explore common generative AI models and tools for text, code, image, audio, and video generation.

Compétences que vous acquerrez

Catégorie : Generative AI
Catégorie : Prompt Engineering
Catégorie : Automation
Catégorie : ChatGPT
Catégorie : Large Language Modeling
Catégorie : Artificial Intelligence
Catégorie : Content Creation
Catégorie : Image Analysis
Catégorie : LLM Application
Catégorie : OpenAI

Ce que vous apprendrez

  • Explain the concept, relevance, and best practices of prompt engineering to guide generative AI models in producing meaningful, accurate outputs.

  • Apply prompt engineering techniques to text prompts, improving the reliability and quality of large language models.

  • Practice prompt engineering techniques and approaches, including interview pattern, chain-of-thought, tree-of-thought, to improve prompt outcomes.

  • Explore commonly used tools for prompt engineering to aid with prompt engineering.

Compétences que vous acquerrez

Catégorie : Prompt Engineering
Catégorie : ChatGPT
Catégorie : Prompt Engineering Tools
Catégorie : Multimodal Prompts

Ce que vous apprendrez

  • Develop a foundational understanding of Python programming by learning basic syntax, data types, expressions, variables, and string operations.

  • Apply Python programming logic using data structures, conditions and branching, loops, functions, exception handling, objects, and classes.

  • Demonstrate proficiency in using Python libraries such as Pandas and Numpy and developing code using Jupyter Notebooks.

  • Access and extract web-based data by working with REST APIs using requests and performing web scraping with BeautifulSoup.

Compétences que vous acquerrez

Catégorie : Object Oriented Programming (OOP)
Catégorie : Data Structures
Catégorie : Python Programming
Catégorie : JSON
Catégorie : Pandas (Python Package)
Catégorie : Web Scraping
Catégorie : NumPy
Catégorie : Scripting
Catégorie : Data Manipulation
Catégorie : Data Processing
Catégorie : Jupyter
Catégorie : Computer Programming
Catégorie : Application Programming Interface (API)
Catégorie : Restful API
Catégorie : Programming Principles
Catégorie : Data Import/Export
Catégorie : Data Analysis
Catégorie : Automation

Ce que vous apprendrez

  • Describe the steps and processes involved in creating a Python application including the application development lifecycle

  • Create Python modules, run unit tests, and package applications while ensuring the PEP8 coding best practices

  • Build and deploy web applications using Flask, including routing, error handling, and CRUD operations.

  • Create and deploy an AI-based application onto a web server using IBM Watson AI Libraries and Flask

Compétences que vous acquerrez

Catégorie : Unit Testing
Catégorie : Application Deployment
Catégorie : Python Programming
Catégorie : Application Programming Interface (API)
Catégorie : Flask (Web Framework)
Catégorie : Restful API
Catégorie : Software Development Life Cycle
Catégorie : Web Applications
Catégorie : Artificial Intelligence
Catégorie : Programming Principles
Catégorie : Integrated Development Environments

Ce que vous apprendrez

  • Explain the core concepts of generative AI, including large language models, speech technologies, and platforms such as IBM watsonX, and Hugging Face

  • Build generative AI-powered applications and chatbots using LLMs, retrieval-augmented generation(RAG), and foundational Python frameworks

  • Integrate speech-to-text (STT) and text-to-speech (TTS) technologies to enable voice interfaces in generative AI applications

  • Develop web-based AI applications using Python libraries, such as Flask and Gradio, along with basic front-end tools like HTML, CSS, and JavaScript

Compétences que vous acquerrez

Catégorie : Large Language Modeling
Catégorie : Generative AI
Catégorie : Flask (Web Framework)
Catégorie : Natural Language Processing
Catégorie : Application Development
Catégorie : LLM Application
Catégorie : Front-End Web Development
Catégorie : Web Applications
Catégorie : Image Analysis
Catégorie : OpenAI
Catégorie : Python Programming
Catégorie : LangChain
Catégorie : Prompt Engineering

Ce que vous apprendrez

  • Construct Python programs to clean and prepare data for analysis by addressing missing values, formatting inconsistencies, normalization, and binning

  • Analyze real-world datasets through exploratory data analysis (EDA) using libraries such as Pandas, NumPy, and SciPy to uncover patterns and insights

  • Apply data operation techniques using dataframes to organize, summarize, and interpret data distributions, correlation analysis, and data pipelines

  • Develop and evaluate regression models using Scikit-learn, and use these models to generate predictions and support data-driven decision-making

Compétences que vous acquerrez

Catégorie : Pandas (Python Package)
Catégorie : Scikit Learn (Machine Learning Library)
Catégorie : Regression Analysis
Catégorie : Data Cleansing
Catégorie : NumPy
Catégorie : Exploratory Data Analysis
Catégorie : Predictive Modeling
Catégorie : Data Manipulation
Catégorie : Data Pipelines
Catégorie : Data Transformation
Catégorie : Data Wrangling
Catégorie : Data Import/Export
Catégorie : Data Analysis
Catégorie : Python Programming
Catégorie : Data-Driven Decision-Making
Catégorie : Matplotlib
Catégorie : Feature Engineering
Catégorie : Statistical Analysis
Catégorie : Data Visualization

Ce que vous apprendrez

  • Explain key concepts, tools, and roles involved in machine learning, including supervised and unsupervised learning techniques.

  • Apply core machine learning algorithms such as regression, classification, clustering, and dimensionality reduction using Python and scikit-learn.

  • Evaluate model performance using appropriate metrics, validation strategies, and optimization techniques.

  • Build and assess end-to-end machine learning solutions on real-world datasets through hands-on labs, projects, and practical evaluations.

Compétences que vous acquerrez

Catégorie : Machine Learning
Catégorie : Regression Analysis
Catégorie : Supervised Learning
Catégorie : Dimensionality Reduction
Catégorie : Unsupervised Learning
Catégorie : Applied Machine Learning
Catégorie : Scikit Learn (Machine Learning Library)
Catégorie : Predictive Modeling
Catégorie : Python Programming
Catégorie : Statistical Analysis
Catégorie : Machine Learning Algorithms
Catégorie : Feature Engineering
Catégorie : Classification And Regression Tree (CART)

Ce que vous apprendrez

  • Describe the foundational concepts of deep learning, neurons, and artificial neural networks to solve real-world problems

  • Explain the core concepts and components of neural networks and the challenges of training deep networks

  • Build deep learning models for regression and classification using the Keras library, interpreting model performance metrics effectively.

  • Design advanced architectures, such as CNNs, RNNs, and transformers, for solving specific problems like image classification and language modeling

Compétences que vous acquerrez

Catégorie : Deep Learning
Catégorie : Keras (Neural Network Library)
Catégorie : Artificial Neural Networks
Catégorie : Network Architecture
Catégorie : Regression Analysis
Catégorie : Machine Learning Methods
Catégorie : Machine Learning
Catégorie : Network Model
Catégorie : Tensorflow
Catégorie : Computer Vision
Catégorie : Image Analysis
Catégorie : Natural Language Processing

Ce que vous apprendrez

  • Differentiate between generative AI architectures and models, such as RNNs, transformers, VAEs, GANs, and diffusion models

  • Describe how LLMs, such as GPT, BERT, BART, and T5, are applied in natural language processing tasks

  • Implement tokenization to preprocess raw text using NLP libraries like NLTK, spaCy, BertTokenizer, and XLNetTokenizer

  • Create an NLP data loader in PyTorch that handles tokenization, numericalization, and padding for text datasets

Compétences que vous acquerrez

Catégorie : Natural Language Processing
Catégorie : PyTorch (Machine Learning Library)
Catégorie : Generative AI
Catégorie : Data Processing
Catégorie : Large Language Modeling
Catégorie : Data Pipelines
Catégorie : Prompt Engineering
Catégorie : Text Mining
Catégorie : Artificial Intelligence
Catégorie : Deep Learning

Ce que vous apprendrez

  • Explain how one-hot encoding, bag-of-words, embeddings, and embedding bags transform text into numerical features for NLP models

  • Implement Word2Vec models using CBOW and Skip-gram architectures to generate contextual word embeddings

  • Develop and train neural network-based language models using statistical N-Grams and feedforward architectures

  • Build sequence-to-sequence models with encoder–decoder RNNs for tasks such as machine translation and sequence transformation

Compétences que vous acquerrez

Catégorie : Natural Language Processing
Catégorie : PyTorch (Machine Learning Library)
Catégorie : Artificial Neural Networks
Catégorie : Text Mining
Catégorie : Generative AI
Catégorie : Deep Learning
Catégorie : Statistical Methods
Catégorie : Data Ethics
Catégorie : Large Language Modeling
Catégorie : Feature Engineering

Ce que vous apprendrez

  • Explain the role of attention mechanisms in transformer models for capturing contextual relationships in text

  • Describe the differences in language modeling approaches between decoder-based models like GPT and encoder-based models like BERT

  • Implement key components of transformer models, including positional encoding, attention mechanisms, and masking, using PyTorch

  • Apply transformer-based models for real-world NLP tasks, such as text classification and language translation, using PyTorch and Hugging Face tools

Compétences que vous acquerrez

Catégorie : PyTorch (Machine Learning Library)
Catégorie : Generative AI
Catégorie : Natural Language Processing
Catégorie : Large Language Modeling
Catégorie : Text Mining
Catégorie : Applied Machine Learning

Ce que vous apprendrez

  • Sought-after, job-ready skills businesses need for working with transformer-based LLMs in generative AI engineering

  • How to perform parameter-efficient fine-tuning (PEFT) using methods like LoRA and QLoRA to optimize model training

  • How to use pretrained transformer models for language tasks and fine-tune them for specific downstream applications

  • How to load models, run inference, and train models using the Hugging Face and PyTorch frameworks

Compétences que vous acquerrez

Catégorie : PyTorch (Machine Learning Library)
Catégorie : Generative AI
Catégorie : Large Language Modeling
Catégorie : Natural Language Processing
Catégorie : Prompt Engineering
Catégorie : Performance Tuning

Ce que vous apprendrez

  • In-demand generative AI engineering skills in fine-tuning LLMs that employers are actively seeking

  • Instruction tuning and reward modeling using Hugging Face, plus understanding LLMs as policies and applying RLHF techniques

  • Direct preference optimization (DPO) with partition function and Hugging Face, including how to define optimal solutions to DPO problems

  • Using proximal policy optimization (PPO) with Hugging Face to build scoring functions and tokenize datasets for fine-tuning

Compétences que vous acquerrez

Catégorie : Large Language Modeling
Catégorie : Generative AI
Catégorie : Reinforcement Learning
Catégorie : Natural Language Processing
Catégorie : Prompt Engineering
Catégorie : Performance Tuning

Ce que vous apprendrez

  • In-demand, job-ready skills businesses seek for building AI agents using RAG and LangChain in just 8 hours

  • How tapply the fundamentals of in-context learning and advanced prompt engineering timprove prompt design

  • Key LangChain concepts, including tools, components, chat models, chains, and agents

  • How tbuild AI applications by integrating RAG, PyTorch, Hugging Face, LLMs, and LangChain technologies

Compétences que vous acquerrez

Catégorie : Natural Language Processing
Catégorie : Prompt Engineering
Catégorie : Artificial Intelligence
Catégorie : LLM Application
Catégorie : Generative AI Agents
Catégorie : Large Language Modeling
Catégorie : Generative AI

Ce que vous apprendrez

  • Gain practical experience building your own real-world generative AI application to showcase in interviews

  • Create and configure a vector database to store document embeddings and develop a retriever to fetch relevant segments based on user queries

  • Set up a simple Gradio interface for user interaction and build a question-answering bot using LangChain and a large language model (LLM)

Compétences que vous acquerrez

Catégorie : User Interface (UI)
Catégorie : Generative AI
Catégorie : Data Storage Technologies
Catégorie : Prompt Engineering
Catégorie : Natural Language Processing
Catégorie : LLM Application
Catégorie : Database Management Systems
Catégorie : Document Management

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeurs

IBM Skills Network Team
IBM
83 Cours1 487 343 apprenants
Sina Nazeri
IBM
2 Cours47 300 apprenants
Abhishek Gagneja
IBM
6 Cours231 501 apprenants
Fateme Akbari
IBM
4 Cours25 340 apprenants
Wojciech 'Victor' Fulmyk
IBM
8 Cours77 594 apprenants
Kang Wang
3 Cours34 200 apprenants
Ashutosh Sagar
IBM
2 Cours15 167 apprenants
Joseph Santarcangelo
IBM
36 Cours2 132 329 apprenants
Alex Aklson
IBM
21 Cours1 324 729 apprenants
Rav Ahuja
IBM
56 Cours4 193 918 apprenants
Antonio Cangiano
IBM
5 Cours514 993 apprenants
Roodra Pratap Kanwar
IBM
1 Cours30 942 apprenants
Ramesh Sannareddy
IBM
15 Cours437 347 apprenants
Jeff Grossman
IBM
3 Cours656 838 apprenants

Offert par

IBM

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions

¹Basé sur les réponses au sondage sur les résultats des étudiants Coursera, États-Unis, 2021.